농촌진흥청, 벼 쓰러짐 면적, 인공지능으로 빠르게 파악해요
실제 피해면적 대비 정확도 약 95%, 피해율 산정 근거자료로 활용
인공지능을 활용한 벼 쓰러짐 피해 면적 산정 기술은 합성곱신경망(CNN)을 활용해 벼가 심겨진(재식) 유형에 따라 정상과 쓰러짐으로 구분하는 본보기(모델)를 학습해 필지 단위로 피해 면적을 산정한다.
집중호우, 태풍 등 자연재해에 의한 벼 쓰러짐 발생 시 피해 면적과 위치를 파악하는 것은 농가 피해 규모 산정, 수매량 조절 등 정부와 지자체 차원의 대응방안 마련에 중요한 요소가 된다.
지금까지는 벼 쓰러짐 피해 정도를 전문 인력에 의해 육안으로 판단하고 있기 때문에 많은 인력과 비용이 소요되고, 객관적인 지표가 부족해 현장 피해 상황을 반영하는 데 어려움이 있다.
이에 비해 인공지능을 활용한 영상분석은 벼 쓰러짐 피해 면적을 빠르고 정확하게 파악함으로써 피해 규모를 산정할 때 근거자료로 유용하게 활용될 수 있다.
농촌진흥청이 2020년 전북 부안군 일대를 촬영한 필지 단위 영상을 분석해 기술을 평가해 본 결과, 실제 피해 면적과 인공지능을 통해 예측한 면적 간 정확도는 95% 이상이었다.
지난해 8월 태풍이 지나간 이후, 전북 부안군 일대 3필지를 대상으로 인공지능을 통해 쓰러짐 피해 면적을 산출했을 때 예측 면적은 각각 4114㎡, 584㎡, 1132㎡로 실제 피해 면적인 4180㎡, 556㎡, 1075㎡와 5% 이내의 오차율을 보였다.
농촌진흥청 작물재배생리과 장재기 과장은 “인공지능을 활용한 벼 쓰러짐 피해 면적 산정 결과는 향후 정책 결정 자료로 활용될 가능성이 높다.”라며, “앞으로 잡초·병해·환경 스트레스 등에 의한 피해 연구도 추진해 노지디지털 농업 기술 개발 및 현장 적용을 강화할 계획이다.”라고 전했다.
전북 김제에서 벼를 재배하는 청년 농업인 강새일 씨는 “인공지능 활용 기술을 자연재해 현장에 적용하면 빠르고 정확하게 쓰러짐 피해 면적을 산정할 수 있을 것으로 기대된다.”라고 말했다.